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Abstract: The generalized zero-divisor graph of a ring R, denoted by I''(R), is a
simple (undirected) graph with a vertex set consisting of all nonzero zero-divisors

in R, and two distinct vertices x and y are adjacent if 2"y = 0 or y"x = 0, for
k

some positive integer n. If R = H R; is a direct product of finite commutative
i=1

local rings R; with |R;| = p;, then we express I''(R) as a H-generalized join of
a family F of a complete graph and null graphs, where H is a graph obtained
from I"(S*) by contraction of edges of all nonzero nilpotents at a single vertex 0,
and S = {0, 1,2} is a multiplicative submonoid of a ring Z4. Also, we prove that
the adjacency spectrum of I'V(R) is {(—1)(5_1), 0(7_3k+2k+1)} Uo(NA(H)), where
[ is the number of nonzero nilpotent elements, v is the number of non-nilpotent
zero-divisors in R and N is a diagonal matrix whose rows (columns) are indexed
with vertices e € I(H) with e diagonal entry is the cardinality of e'* graph in
the family F.
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graph, regular graph, adjacency matrix.
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1. Introduction

Let G = (V, E) be a graph with vertex set V' and edge set E. The adjacency
matriz of graph G denoted by A(G) = [a;;], is a matrix whose rows (columns) are
indexed with vertices of G, and a;; = 1, if i" and j™ vertices are adjacent in G, and
a;; = 0 otherwise. The adjacency spectrum of a graph G, denoted by c4(G), is a
spectrum of the matrix A(G). If K, is complete graph on n vertices and K, is null
graph on n vertices, then o4(K,) = {(=1)""Y, (n — 1)V} and o4(K,) = {0M™}.
Let H be a graph with vertex set [n] = {1,2,...,n} and F = {G1,Gs,...,G,}
be a family of r;i-regular graphs G; with |G;| = k;. If G is a graph obtained by
replacing ¢ by G; and every vertex of G; is joined to every vertex of G if and only
if ¢ and j are adjacent in H, then G is called as H-generalized join of the family of
graphs F, we write it as G = \/ Gi. Recall the following result from [17].

H

Theorem 1.1. [17] Let H be a graph with vertex set [n] = {1,2,...,n} and
{G1,Ga,...,G,} be a family of ri-reqular graphs G; with |G;| = k;. If G = \/Gi,
H

then

n

04(G) = o(diag(k, k... k) A U (0a(G)\ ). (LD)

i=1

There is an interplay between the adjacency spectrum and structural properties
of a graph, see [8].

A mapping * on an associative ring is called an involution if for all x, y € R:
(x+y)* =z"+vy*, (zy)* = y*2* and (z*)* = x. A ring equipped with involution
x is called a *-ring. The concept of the zero-divisor graph of a commutative ring
was first introduced by Beck in 1988, [5]. He defined the zero-divisor graph of
a commutative ring R, with a vertex set of all elements of R, and two distinct
vertices = and y are adjacent if xy = 0. Anderson and Livingston [1] (1999),
introduced a zero-divisor graph for a commutative ring R, denoted by I'(R) as
a simple (undirected) graph, with a vertex set Z*(R) the set of all nonzero zero-
divisors in R, and two distinct vertices x and y are adjacent in I'(R) if zy = 0. Patil
and Waphare [15] introduced a zero-divisor graph of a x-ring R. Kumbhar et al.
[9] introduced the strong zero-divisor graph of #-rings. In [11], authors introduced
a generalized zero-divisor graph of a #-ring R, denoted by I''(R). They associated
a simple (undirected) graph with the vertex set Z*(R), and two distinct vertices
x and y are adjacent if z"y* = 0 or y"z* = 0, for some positive integer n. If
R is a commutative ring, then the identity mapping is the only involution on R.
Hence, the generalized zero-divisor graph of a commutative ring R is a simple graph
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with vertex set Z*(R), and two distinct vertices z and y are adjacent if "y = 0
or y"r = 0, for some positive integer n. Recently, in [12], authors studied the
spectrum of the generalized zero-divisor graph of the ring Z,. s for distinct primes
p, q and positive integers a, 8. John D. Lagrange [10] shows that all eigenvalues of
['(Z%) are eigenvalues of Pascal-type matrices. The study of the spectrum of zero-
divisor graphs is explored in [6, 13, 14, 16]. Readers refer to [2, 3, 8] for concepts
in zero-divisor graphs, ring theory, and graph theory, respectively.

In [18], the authors considered a finite reduced ring R,, with n maximal ideals.
The class of rings R,, contains the Boolean rings as a subclass. They studied the
eigenvalues of finite reduced rings in terms of the eigenvalues of Boolean rings us-
ing equitable partition. Let R be a direct product of local commutative rings with
unity. In this paper, we study eigenvalues of I''(R) in terms of the eigenvalues of
I["(S*), where S is a multiplicative submoid of the ring Z4. In the second section,
we study the elementary structural properties of the generalized zero-divisor graph
of rings, and we associate a generalized zero-divisor graph to a multiplicative sub-
monoid. In the third section, we expressed the adjacency spectrum of I'(S¥), where
S = {0, 1,2}, which is a submonoid of the ring Z, with respect to multiplication.
In the fourth section, for any finite commutative ring, we express the graph I"(R)
as a generalized join of a complete graph and null graphs and obtain its adjacency
spectrum. We find the multiplicities of eigenvalues 0 and —1 of IV(R) and express
the remaining eigenvalues in terms of eigenvalues of I'(S*), where R is a ring which
is a direct product of finite commutative local rings with unity. In the fifth section,
as an application, we give illustrative examples to find the adjacency spectrum of
I'"(R), where R is a direct product of finite commutative local rings.

2. The generalized zero-divisor graph I"(R)

Let R be a commutative ring. The generalized zero-divisor graph T'(R) is a
simple (undirected) graph with vertex set the set of all nonzero zero-divisors in
R and two distinct vertices x and y are adjacent if 2"y = 0 or xy™ = 0, for some
positive integer n. We use the exact definition to define the generalized zero-divisor
graph of a finite commutative monoid with respect to multiplication.

It is clear that ['(R) and I"(R) have the same set of vertices, and if two vertices
x and y are adjacent in I'(R), then they are adjacent in I"(R) but not conversely.
In [1], Anderson et al. proved that for a commutative ring R, I'(R) is connected
and diam(I'(R)) < 3. We have I"(R) is connected and diam(I"(R)) < 3.

The following are elementary properties of I'(R).

Remark 2.1. Let R be a finite commutative ring.

1. If x 1s a nonzero nilpotent element in R, then it is adjacent to all the other
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vertices in I"(R).

2. If two vertices x and y are adjacent in I'(R), then for any two positive integers
i, ], the vertices x* and y’ are also adjacent in T'(R).

3. If R # 7o X Zs and x is adjacent to all the other vertices, then x is a nilpotent
element in R.

4. For a reduced ring R, I'"(R) ~ T'(R).
The following lemma gives the condition under which IV(R) is a complete graph.

Lemma 2.2. Let R be a finite commutative ring. Then I''(R) is a complete graph
if and only if R is a local ring. In particular, if the number of nonzero nilpotent
elements in a local ring R is m, then I''(R) = K,,. Further, I'"(Zyn) = Kpn-1_;.
Proof. Let R be a finite commutative ring. R is a local ring if and only if Z*(R)
is the set of all nonzero nilpotent elements in R. Thus I"(R) is a complete graph.
Further, if R = Z,», then Z*(R) = {0,p,2p, ...,p" '}. Therefore I'(R) = Kyn-1_.

Let R be a finite commutative ring of size n and n has a prime factorization
pytps? .. . Then R is direct product of finite local rings R, i of order p;“, for
all 1 = 1 2 .,k. In a local ring, every element is nllpotent or a unit. Every
nonzero nilpotent element of a ring R is adjacent to any other vertex, since if x is
a nonzero nilpotent element in R, then x"y = 0, for some positive integer n and
every y € V(I'(R). The extended generalized zero-divisor graph I",(R) is a graph
with a vertex set R and any two vertices x,y are adjacent if 2"y = 0 or zy" = 0,
for some positive integer n.

3. Adjacency spectrum of I"(S*), S ={0,1,2}

Definition 3.1. [7] Let G = (V, E) be a graph. A partition Il = X;UXoU---UX}
of V' is said to be an equitable partition if there are numbers q;;, i,j € [k] such that
every vertex in X; is adjacent to exactly q;; vertices in X;.

Let G = (V,E) beagraph and V = X UX,U---UX}, with X;NX; = ¢, for all
i # j € [n]. Suppose that every vertex in X; is adjacent with exactly ¢;; vertices in
X; for all i,j € [n] and P = [p;;] be a matrix whose rows are indexed by vertices
in V' and columns are indexed by sets X, Xo,...,X,,, where

1 ifo; € Xj
Pij = .
0 otherwise.

Then @ = [¢;;] is called the quotient matriz. Let o be a set of indices with exactly
one vertex from each X;, and ¢ is the complement of a. For any matrix M,
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Mo @ 3] represents a submatrix whose row indices are given by « and column
indices are given by . Let M[: (] represent the submatrix with all row and
column indices given by . Recall the following theorem from [19].

Theorem 3.2. [19] Let A(G) be the adjacency matriz of a graph G, and let Q be
the quotient matriz corresponding to an equitable partition I1 = { X1, Xo, ..., Xi}.
Let P be the characteristic matriz of 11 and let o be an index set that contains
exactly one element from each X;, i € [k].

04(C) = o(Q) U (@), (31)
where Q" = A(G)[a® : af] — Pla® :JA(G)[a : of].

Observe that Theorem 1.1 is a particular case of Theorem 3.2, since the vertex
sets of a family of graphs in the generalized join graph of regular graphs form an
equitable partition. Next, recall the generalized Cauchy interlacing theorem and
some of its consequences [8].

Theorem 3.3. [8] Eigenvalues of a real symmetric matriz interlace with those of
its principal submatrices. That is, if Ay < Ay < --- < N\, are eigenvalues of a
real symmetric matric M and py < pe < -+ < i, are eigenvalues of its principal
submatriz of size m then

)‘i S jor S )\n—m—&—h for 1 = 172, .o, M. (32)

The set S = {0,1,2} is monoid of the ring Z, with respect to multiplication.
That is, S is a subset of a ring Z, which is closed with respect to multiplication.
One can consider a zero-divisor graph on a subset of a ring. We use set S and the
graph I',(S) to study the graph I",(R) in subsequent results. The adjacency matrix
of an extended generalized zero-divisor graph (which is simple, so that it has no
loops) I",(S) is

0 11
ATL(S))=|1 0 1| =13— I3, where 1, is a matrix of all ones of size n.
1 10

It is clear that
a(A(TL(S)) = {2V, (-1)@}. (3.3)

Recall that for any two graphs G; and Gy, A(G; ® Ga) = A(G1) ® A(G). Also
for any two square matrices M; and M, of same size, o(M; ® Ms) = o(My).0(My).
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Note that o(M;) and o(Ms) are multisets and o(M;).0(Mz) is a multiset which
is obtained by taking the product of each element in o(M;) with each element in
o(Ms), with counting multiplicities. Hence, we have the following.

a(A(TL(SY))) = o(A(@"(TL(S))) = (o (ATL(S))" (3.4)
— {((_1)0)(2)(’”‘))('5) = 0,1,2,...,k:}.

A set X = {0,2}%\ {0}* is a set of all nonzero nilpotent elements in S* and
Y = S*\ ({0,2}* U {1}*) is a set of all non-nilpotent zero-divisors in S*. Then
|X| =2F—1and |Y] = 3% —2F — 1. Let T(S* \ {0}*) be subgraph of T",(S*) on
vertices S*\ {0}*, Cr = A(T”(S*\ {0}*)) and D;, = A(T’(S*)). Then the adjacency
matrix of the graph I",(S*) with respect to vertex ordering {{0}*, {1}*, X, Y} is
given by

0 1 A({O}k,X) A({O}k,Y)

, 1 0 AQUSX) A1} Y)

AT = 1 ax (01 A1) AXX)  AKXY) |
AY{OP) AV AY.X) ALY

(3.5)

where A(X7, X3) is an adjacency matrix between vertex sets X; and X,. Therefore,
we have

0 1 1y ok_q 19 39k
A(F/e(sk)) _ . 1 . 0 . 11,2’“—1 / . 01,3’“—2’“—1 ’
2k—1,1 2k—1,1 ok—12k—1 — dok_1 2k—1,3k—2k_1
_13k—2k—1,1 Ok ok 11 L3k ok 1901 M3k—2k—1,3k—2k—1
(3.6)
0 Lyor g 01,36 9k 1
Cr = 12;@,1’1 12'@4,2'&1 — Iy 12k71,3k72k—1 ) (3-7>
_03k—2k—1,1 L3k ok 19k 1 M3k—2k—1,3k—2k—1
D, — Lok 1961 — Ipk 4 Lok 136 ok 1 (3.8)
g L3k ok 19k _1 Msk—2k—1,3k—2k—1 ’

where Mk _or_1 30 or_ 1 = A(Y,Y) .

By theorem 3.3, eigenvalues of C}, interlace those of Dy, and eigenvalues of A(I",(S*))
interlace those of Cy. That is, if Ay < -+ < Age are eigenvalues of A(T(S*)),
r < pe < --- < usgk_o are eigenvalues of Cp and 1 < vy < -+ < gk, are
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eigenvalues of Dy, then

N <ty < Aoy for i=1,2,...,3F—2 (3.9)
i < v <y for i=1,2,...,3F -3 (3.10)

If k is even, then the eigenvalues of I",(S*) can be written as

(’1‘) times (g) times (g) times
_2::_2<1<22::22<24::24<<2k;_2::2k_2<2k
—

(kfl) times (g) times (’Z) times (kfz) times

If k is odd, then the eigenvalues of I',(S*) can be written as

—2F == QF R gt o= b o (3.12)
(%) times (5) times
92— 92 9= =9 B 293 . okl _ okl _ok
(\F,) times (%) times (5) times (£, times

By equations (3.9) to (3.12), we state the following theorem.
Theorem 3.4. Let S = {0,1,2} be a monoid of the ring Z, with respect to

multiplication and k be a positive integer. Then:

If k is even

oA(I"(S%)) = {((_1)@_]»)((5),2): j=1,2,.. . k- 1} U {ju1, pio, - - fion—a}
(3.13)

where — 2870 <y < iy < =282 for i=1,3,5,... k—1,

— 2 < ey S <4y 20 < pigne1 < gk < 2772 fori=2.4,... k—2.

If k is odd

k

oa(I'(S%)) = {((—1)J‘zk—j)<(j>—2>; j=1,2,.. . k- 1} U {fin, g, - s fiosl} .
(3.14)

where — 280 <y < py < =282 for i=2.4,... . k—1,and

—d < ey S <2, 28 < i < Pigpsr < 2772 fori=1,3,...k—2.
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To find these unknown eigenvalues i1, fio, . . ., fior_2, we use the concept of eq-
uitable partitions and quotient matrices of the equitable partitions. We find an
equitable partition of the vertex set of I"(S*) as below.

For each (i,j) € [k — 1] x {0,1,...,k — i}, define

Xo ={0,2}"\ {0}* (3.15)
Xij= {:(: €{0,1,2}* : z has i 1's and j 0'5}. (3.16)
Let m be the number of X; ;'s. Thenm = 142+ - +k—1+k = #EDE Welist these

sets according to the dictionary order on {(i,7): i € [k —1],5 € {0,1,...,k —i}}
as below

Xl,Oa Xl,la ) Xl,k:—27 Xl,k—l
Xoo,  Xoi, Xy koo,

M, =Xud 7 7 e . (3.17)
Xk—l(] Xk—ll

In the following result, we prove that the equation (3.17) forms an equitable
partition.

Theorem 3.5. The family of sets 11, in the equation (3.17) forms an equitable
partition of the vertex set of the graph I'(S*). Every vertex in X, , is adjacent to
exactly L q), rs) number of vertices in X, ,, where

Lipg).r) = (k;p) <k;f;r> + (k;p> (k:) - (k;f;) (3.18)

The quotient matrixz associated with the equitable partition 11, is m x m matriz
given by

Qm = [Lpg) o) lmxm: and o(Qm) € 0a(I'(SY)). (3.19)

Proof. Every vertex in X is adjacent to every other vertex, since it is nilpotent.
Every vertex in Xy is adjacenct to L), s number of vertices in X, . Also,
every vertex in X, is adjacent to all the other 2 — 1 vertices in X,. Therefore
Lo,0),00) = 2" — 1.

Fix sets X, , and X, ¢ in II,,. Let x € X, ,. We will show that z is adjacent to
exactly L q),(rs) number of vertices in X, ,. If y € X, , is adjacent to x, then
2%y = 0 or zy? = 0. Fix 2%y = 0. Then z, = 1 implies , = 0. Hence p < s and

r < k — p. There are (k;p) choices for 1's in y and (kg_p;’") choices for 0's of y .
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k—p—r
s—p
that zy? = 0, then we have x; = 1, which implies y; € {0,2}. Hence r < k — p.
So counting 1’s has (k;”) choices and 0's has (kj) choices. Therefore number of

y € X, s which satisfy zy? = 0 is (k;p) (k?") Also, if 2%y = 0 = ay?, then z, = 1

imply that y; = 0 and x; = 0, which gives y; = 1 and hence p < s and ¢ < r. So
counting choices for 0’s of y, we get (kgfgr) number of y's in X, ; which satisfy

Hence number of vertices y € X,., such that z%y = 0 is (k;p )( ) Now assume

2%y = zy?* = 0. Therefore by inclusion-exclusion principle, the number of vertices
y € X, which are adjacent to z is Ly q) s given by equation (3.18), and the
quotient matrix associated to the partition II,, is given by equation (3.19).

4. Spectrum of I'(R)

Let R be a finite commutative local ring. We define ¢(R) to be the number of
units in R and f(R) to be the number of nonzero zero-divisors in R. Since in a
finite commutative local ring R, every nonzero zero-divisor is a nilpotent element,
hence f(R) = |R| — ¢(R) — 1. Let U(R) denotes the set of units in R. Then
U(RiXxRyx-+-xR,) =U(R1)xU(Rg)%x---xU(R,). Hence ¢(Ry x Ro X+ X R,) =
P(R1)p(Rz) -+ (Ry).

The following result gives the adjacency spectrum of the extended generalized
zero-divisor graph I',(R) for a finite commutative local ring R.

Theorem 4.1. Let R be a finite commutative local ring with m nilpotent elements
and n units. Then

UA(F’E(R)) - {O(n—l)’ (_1)(m—1)’ m—1+ \/(77;— 1)2 +4mn7 m—1— \/(77;— 1)2 +4mn} |

(4.1)
Proof. Let X be the set of nilpotent elements and Y be the set of units in a ring

R. Then |X| = m and |Y| = n. The adjacency matrix of I',(R) with respect to
ordering of vertices {X,Y} is

]—m_[m ]—mn
I e

The nullity of A is n — 1 and the nullity of A + I,,,4,, is m — 1. Therefore
{007, (=) U} C (TU(R)).

1m - Im ‘ ]-m,n
1n,m ‘ On

Also, [ } is an equitable partition of the matrix A(I",(R)) and its
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m—1 n

0 } . Therefore,

quotient matrix is ) = [

aa(Te(R)) = {00V, (=)™, a(Q)} = {0"V, (=1 Y, A\, Ao},

where Aj, Ay are roots of equation 22 — (m — 1)z — mn = 0.

That iS, A = m—1+\/(rz—1)2+4mn’ Ay = m—l—\/(m—1)2+4mn.

2

k
Corollary 4.2. If R = HRZ' be a direct product of finite commutative local rings
i=1
R; with m; nilpotents and n; units in the ring R; fori=1,2,... k. Then

{(O)(Zle(m—l) |‘1§|)7 ((_1)14)(]_[?:1(71%71))} C UA(FQ(R)) (42)
Proof. By Theorem 4.1,
UA(F/E(RZ)> - {O(ni_1)7 (_1)(77%—1)7 )\i17 )\i2}7

where \;1, A\jp are roots of equation 2% — (m; — 1)z — myn; = 0. Since T',(R) =
I'(R1)®TL(Ry)®- - -@T%(R), 0a(TL(R)) is a multiset and it is product of multisets
oA(T(R1)),04(I",(R2)),...,04(I".(Ry)). Therefore 0 is an eigenvalue of o4(I'",(R))
R
| Ri|

k
with multiplicity 2:(71Z - 1) Also, (—=1)* is an eigenvalue with multiplicity
i=1

k

1\ IR
[T = 1). Hence {(0)=" VIR, (1) It € oy (TL(R)).
=1

Corollary 4.3. If R is a finite commutative local ring, then
aa(l'(R)) = {(=)VV (f(R) - 1)V} (4.3)

In particular,

oAl (Zye)) = { (=170, (7 = 1)}

Proof. If R is a finite commutative local ring, then all vertices in ["(R) are nonzero
nilpotent elements. Therefore, I'(R) = Ky(g). Hence proof.

Definition 4.4. Let H be a graph obtained from T'(S*) by merging all nilpotents
nto a single vertex say 0 and by edge contraction.
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First, we express I'(R) as an H-generalized join of a complete graph and a
family of null graphs.

Let
1 if z; is unit,
X(z;) =<0 ifx; =0,
2 if x; is nonzero nonunit.
and

C(z) = (x(x1), x(z2), ..., x(xx)) € Sk, for each z = (x1,29,...,2) € R.
We define

Xo={z € R: C(z) € {0,2}"\ {0}"}, :
X, ={x€R:C(z)=ec€ S"\ ({0,2} U {1}")}. (4.5)

The family of sets
{Xo, Xe: e € SF\ ({0,2}F U {1}9)}. (4.6)

These 3% — 2% sets forms a partition of the vertex set of I'(R).

The following result gives the total number of nonzero nilpotent elements and
the number of non-nilpotent zero-divisors in the direct product of finite commuta-
tive local rings.

k
Theorem 4.5. Let R = HR"’ where R; are finite commutative local rings for
1=1,2,...,k. Let 8 and Wl_c%fenote the total number of nonzero nilpotent elements
and the number of non-nilpotent zero-divisors in a ring R. Then

B=1Xo| = f(R),y= Z | Xe|, where (4.7)
ecH\ {0}
[ Xe| = ¢ H R; | % f(R;). (4.8)
ei(i)zl ei(l):2

Proof. Since ¢ is a multiplicative function, the proof follows from the multiplica-
tion principle of combinations.
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In the following theorem, we express the graph I'(R) as an H-generalized join
graph of a complete graph and null graphs.
k
Theorem 4.6. Let R = H R; be a direct product of finite commutative local rings

=1
and F = {I"(Xo),["(X,) : e € H} is the family of subgraphs of T'(R), where

Xo = {z € R: x(z) € {0,2}"\ {0}*}, (4.9)
X.={z€R: x(z)=e€ S"\ ({0,2}* U {1}")}. (4.10)

Then
I'(Xo) = Kix,). I'(Xe) = K., (4.11)

and I''(R) is a H-generalized join of family F of graphs.
Proof. Let x € X, and y € X;. Suppose e and f are not adjacent in the
graph H. Then e"f # 0 and ef™ # 0, for any positive integer n. Hence there is
t € {1,2,...,k} such that e(t) = f(t) = 1 and hence z; and y; both are units.
Therefore 2"y # 0 and xy™ # 0, for any positive integer n. Hence, z and y are not
adjacent. Also, if e and f be adjacent, then e*f = 0 or ef? = 0. There exists a
positive integer n such that 2" = €? and y™ = f2. Therefore, 2"y = 0 or zy” = 0
for some positive integer n. Hence, since e and f are adjacent, it follows that x
and y are adjacent. Hence, any two vertices x € X, and y € X are adjacent if
and only if e and f are adjacent in H. Thus ["(R) is H-generalized join of family
of graphs F.

The following theorem gives an expression for the adjacency spectrum of I''(R)
for a direct product of finite commutative local rings.

k

Theorem 4.7. Let R = HRi be direct product of finite commutative local rings

i—1
and N = diag(|Xe|)ec- Then

a@4a”uw»::{(—1yﬂ4xow—whﬁh4ﬂ}LJUQVALH». (4.12)
Proof. By Theorem 4.6, we have

I'(R)=\/F, (4.13)
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where F is a family of graphs given in Theorem 4.6. Hence by Theorem 1.1, we
have

o(U'(R) = {(=)" U (J APV} ua(NAH))). (4.14)

ec H\{0}

Therefore
o(I'(R)) = {(-1)F=11 U {(0)@@61{\{0}(\){6'*1))} Uo(NA(H))). (4.15)

By using equation (4.7), we get the expression in equation (4.12).
k
Theorem 4.8. Let R = H R; be a direct product of finite commutative local rings

R;. Let X be set of all mllp})tents m R and fori=1,2,...,k—1,5=0,1,..., k—1,
of

Xij={x € R: C(z) = e € S* has exactly i 1's and j 's} .
Then Xij = Xeij U Xe;j J---uU Xe%ij, dzlj = |Xe7ij ,déj = |Xe;j
where m;; = (kzl) (kf;'.ﬂ). Let us order sets X;; according to their increasing height,
where height of X;; is ¢ + j. That is So = Xo, S1 = X1, S2 = X2, 53 =
Xo1, Sy = X3, S5 = Xog, S¢ = X31,.... Let A,y be a matrix whose rows are
indexed by vertices in S, and columns are indexed by vertices in Sy and D;; =
diag(d?, . .. ,dﬁ%ij) then nontrivial eigenvalues of adjacency matriz A(I'(R)) is that
of o(NA(H)) and NA(H) is a block matriz diag(D;;)[Aqj]. This block partitioning
of N(A(H)) is equitable if and only if R; are same for alli=1,2,... k.
Proof. Observe that the sum of each row of A;; is the same. Hence the block
partition of A(H) as [A;;] is equitable. Also, each D;; is a scalar matrix if and only
if R; is the same for all i. Hence, each block of diag(D;;)[A;;] has a constant row
sum. Hence proof.

v = 1Xe, |
ndd =X, .

k
Remark 4.9. Above theorem says that if ring R = HRpa, where Ry« is a local
i=1
commutative ring of order p* then nontrivial eigenvalues of A(T'(R)) are given by
a quotient matrix of size (g), which is much smaller than that of A(H).

5. Application

Let R; = Z, be commutative local ring of order ¢; = p;* for each i = 1,2,3

k
and R = H R;. Let N(R;) denotes the set of all nilpotent elements in the ring R;,
i=1



38 South FEast Asian J. of Mathematics and Mathematical Sciences

N*(R;) = N(R;) \ {0} and U(R;) denotes units in the ring R;. In this case ¢(R)
becomes ¢(|R|)- Eulers’ phi function and f(R) = f(|R|) = |R| — ¢(|R|) — 1. Next,
we will find the adjacency spectrum of a ring R for k = 1,2, 3.

(i) Let k=1, R = R;. It is clear that I''(R;) = K, _1. By Corollary 4.3,
oa(l'(R) = {(=DF" 2, (" =2},
(ii) Let k =2, R = Ry x Ry. A graph H is the subgraph of I",(S?) with vertices

eo = (0,0), e1 = (0,1), eo = (1,0), e3 = (1,2), e4 = (2,1). The vertex set of
I'"(R) is partitioned into a family of sets F = {X,,: ¢ =0,1,2,3,4} with

Xey = (N(Ry) x N(B2)) \{(0,0)}, Xe, = {0} x U(Ry),
Xe, = U(Ry) x {0}, X, = U(Ry) x N*(Ry), X, = N*(Ry) x U(Ry).
Therefore,

[ Xeol = f(132), | Xey | = 0(q2), [ Xen| = 9(q1),
[ Xes| = 0(q1) f(q2), [ Xeu| = f(q1)0(q2)-

Since ['"(R) = \/ {KlXeo\aF\Xeili i € [4]} with underlying graph
H
H =T'({eq, €1, €2, €3,€e4}) as a subgraph of I',(S?). Therefore

Fa(T'(R)) = {000, (~1) (%D} U o(Qs), where

011 1 1][|X,] 0 0 0 0
101 10] 0 [X, 0 0
Qs=11 100 1| 0 0 |X,| o0 0
1 1000[] 0 0 0 [X.| O
10100]|] o0 0 0 0 |X.,|

(iii) Let £ = 3, R = Ry X Ry x R3. In this case, I"(R) is H-generalized join of
a family of graphs {K|X80|,F‘Xe”: e; € Hs \ {eo}}, where H is subgraph of
[(S?) on vertices eg = (0,0,0), e; = (0,0,1), e5 = (0,1,0), e3 = (0,1,1),
eq = (0,1,2), e5s = (0,2,1), e = (1,0,0), ez = (1,0,1), eg = (1,0,2), eg =

), €10 = (1,1,2), €11 = (1,2,0), €12 = (1,2,1), €13 = (1,2,2), €14 =

), €15 = (2, ]_,0)7 €16 = (27 1, ].), €17 = (2, ]_, 2), €18 = (2, 2, 1) Therefore
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|X0| = f(QIQQQ3)7
| Xe| = 0(q1), | Xey| = 0(q2), | Xes| = 0(q23)
| Xeu| = (q2) f(g3), | Xes | = (g3) f(q2),

|X€18’ = f(Q1)f(QQ)¢(Q3)'
oA(T'(R)) = {0=R 050, () X0 L U o(Qy), where
Q9 = A(H)diagﬂxe\)eefl-

Now, according to the equation (3.17), we write an equitable partition of the
vertex set of R as below.

Xo = Xegs (5.1)
Xio=Xe, UX, UX, o, (5.2)
Xi1=X, UX,, UX, UX,, UX,, UXes, (5.3)
X2 =X, UX,, UXg, (5.4)
X0 = Xeyy U Xeyy U Xeyg, (5.5)
Xo1 = Xeyg UXe, U Xy (5.6)

We take the sets that partition the vertex set of H as follows.

So = {60}, Sy = {613,617, 618}, Sy = {647657687 61176147615}, S = {61, 62766},
Sy = {610,6127616}, S5 = {63767769}«

Suppose that A;; is a submatrix of A(H) whose rows are indexed with vertices
in S; and columns are indexed by S;. Then A(H) = [Aij]ffo,jzo and note that
A = A%, Observe that

011
Ao =01, A1 = A55 =03, Az3= |1 0 1|, Ay =03, As55 = O3,
1 10
(0 01 1 1 0]
001 101
1 10001
Agy = L1001 0l Api = Agg = Aoy = Aos = 113, Age = 116,
1 00 1 01
01 1 0 1 0]
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1 10000 1 10 1 10
Ap=10 01 0 1 0|, As=1|1 0 1|, Aiu=03, A;5=1|1 0 1},
_O 0010 1_ 011 _O 1 1
(1 01 1 0 1] 00110 O]
A32— O 1111 O 7A4220376, A52: 1 0 O O 0 1 5
_1 1 001 1_ 01 001 0_
0 0 1
Asg =13, Ags = |0 1 0], Ass = Os.
1 00

Let N3 = diag(Dy, D1, Do, D3, Dy, D5). Then Q19 = N3A(H3) and diagonal
matrices Dy, D1, Do, D3, Dy, D5 are given by

Dy = f(Q1CI2CI3)

Dy = diag(¢(q1) f(q2) f(g3), [ (q1)$(q2) f (
Dy = diag(¢(q2) f(as), f(a2)¢(a3), o(a1) f

Dy = diag(é(gs), (q2), ¢(q1)),

Dy = diag(¢(q1q2) f(q3), #(0103) f(a2), f(q1)0(q243)),
D5 = diag(¢(q2q3), 9(01q3), P(q1G2)-

Q3)a f(CJ1)f(CI2)¢(CZ3)),
(a3), f(q1)(as), d(a1) f(a2), fla1)d(g2)),

The block diagonal matrix [Aij]f’:507j:0 forms an equitable partition of the
matrix A(H) and corresponding quotient matrix is

= [qu]-

e e e =)
N O W WD
— =W NN W
OO = OO W

N O DN = O W
OO = = = W

The matrix Q9 can be written into block diagonal form as [D;A;;]25 j=o- 1ts

qij
size(Aqj)

quotient matrix is Q' = [tmce(Di) . Eigenvalues of ()’ interlace

i=0,j=0
eigenvalues of Qq9.

6. Conclusion
Expression (4.12) in Theorem 4.7 gives multiplicities of eigenvalues —1 and 0 in
terms of the number of nonzero nilpotent elements and non-nilpotent zero-divisors,
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respectively, in the ring. The remaining eigenvalues are in terms of the eigenvalues
of I"(S*). Many authors expressed zero-divisor graphs as a generalized join of other
graphs and obtained the properties of zero-divisor graphs. In expression (4.13), we
have expressed the graph ["(R) as a multi-partite graph with one component a null
graph, and the remaining components are all complete graphs. Therefore, if £ < 3
and p2~' < 4, then I'"(R) is a planar graph. Many other structural properties of
the graph I'"(R) can be observed from the expression (4.13).
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