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Abstract: The generalized zero-divisor graph of a ring R, denoted by Γ′(R), is a
simple (undirected) graph with a vertex set consisting of all nonzero zero-divisors
in R, and two distinct vertices x and y are adjacent if xny = 0 or ynx = 0, for

some positive integer n. If R =
k∏

i=1

Ri is a direct product of finite commutative

local rings Ri with |Ri| = pαi
i , then we express Γ′(R) as a H-generalized join of

a family F of a complete graph and null graphs, where H is a graph obtained
from Γ′(Sk) by contraction of edges of all nonzero nilpotents at a single vertex 0,
and S = {0, 1, 2} is a multiplicative submonoid of a ring Z4. Also, we prove that

the adjacency spectrum of Γ′(R) is
{
(−1)(β−1), 0(γ−3k+2k+1)

}
∪ σ(NA(H)), where

β is the number of nonzero nilpotent elements, γ is the number of non-nilpotent
zero-divisors in R and N is a diagonal matrix whose rows (columns) are indexed
with vertices e ∈ Γ′(H) with eth diagonal entry is the cardinality of eth graph in
the family F .
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graph, regular graph, adjacency matrix.
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1. Introduction
Let G = (V,E) be a graph with vertex set V and edge set E. The adjacency

matrix of graph G denoted by A(G) = [aij], is a matrix whose rows (columns) are
indexed with vertices of G, and aij = 1, if ith and jth vertices are adjacent in G, and
aij = 0 otherwise. The adjacency spectrum of a graph G, denoted by σA(G), is a
spectrum of the matrix A(G). If Kn is complete graph on n vertices and Kn is null
graph on n vertices, then σA(Kn) =

{
(−1)(n−1), (n− 1)(1)

}
and σA(Kn) =

{
0(n)

}
.

Let H be a graph with vertex set [n] = {1, 2, . . . , n} and F = {G1, G2, . . . , Gn}
be a family of ri-regular graphs Gi with |Gi| = ki. If G is a graph obtained by
replacing i by Gi and every vertex of Gi is joined to every vertex of Gj if and only
if i and j are adjacent in H, then G is called as H-generalized join of the family of

graphs F , we write it as G =
∨
H

Gi. Recall the following result from [17].

Theorem 1.1. [17] Let H be a graph with vertex set [n] = {1, 2, . . . , n} and

{G1, G2, . . . , Gn} be a family of ri-regular graphs Gi with |Gi| = ki. If G =
∨
H

Gi,

then

σA(G) = σ(diag(k1, k2, . . . , kn)A(H)) ∪
n⋃

i=1

(σA(Gi) \ {ri}) . (1.1)

There is an interplay between the adjacency spectrum and structural properties
of a graph, see [8].

A mapping ∗ on an associative ring is called an involution if for all x, y ∈ R:
(x + y)∗ = x∗ + y∗, (xy)∗ = y∗x∗ and (x∗)∗ = x. A ring equipped with involution
∗ is called a ∗-ring. The concept of the zero-divisor graph of a commutative ring
was first introduced by Beck in 1988, [5]. He defined the zero-divisor graph of
a commutative ring R, with a vertex set of all elements of R, and two distinct
vertices x and y are adjacent if xy = 0. Anderson and Livingston [1] (1999),
introduced a zero-divisor graph for a commutative ring R, denoted by Γ(R) as
a simple (undirected) graph, with a vertex set Z∗(R) the set of all nonzero zero-
divisors in R, and two distinct vertices x and y are adjacent in Γ(R) if xy = 0. Patil
and Waphare [15] introduced a zero-divisor graph of a ∗-ring R. Kumbhar et al.
[9] introduced the strong zero-divisor graph of ∗-rings. In [11], authors introduced
a generalized zero-divisor graph of a ∗-ring R, denoted by Γ′(R). They associated
a simple (undirected) graph with the vertex set Z∗(R), and two distinct vertices
x and y are adjacent if xny∗ = 0 or ynx∗ = 0, for some positive integer n. If
R is a commutative ring, then the identity mapping is the only involution on R.
Hence, the generalized zero-divisor graph of a commutative ring R is a simple graph
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with vertex set Z∗(R), and two distinct vertices x and y are adjacent if xny = 0
or ynx = 0, for some positive integer n. Recently, in [12], authors studied the
spectrum of the generalized zero-divisor graph of the ring Zpαqβ for distinct primes
p, q and positive integers α, β. John D. Lagrange [10] shows that all eigenvalues of
Γ(Zk

2) are eigenvalues of Pascal-type matrices. The study of the spectrum of zero-
divisor graphs is explored in [6, 13, 14, 16]. Readers refer to [2, 3, 8] for concepts
in zero-divisor graphs, ring theory, and graph theory, respectively.

In [18], the authors considered a finite reduced ring Rn with n maximal ideals.
The class of rings Rn contains the Boolean rings as a subclass. They studied the
eigenvalues of finite reduced rings in terms of the eigenvalues of Boolean rings us-
ing equitable partition. Let R be a direct product of local commutative rings with
unity. In this paper, we study eigenvalues of Γ′(R) in terms of the eigenvalues of
Γ′(Sk), where S is a multiplicative submoid of the ring Z4. In the second section,
we study the elementary structural properties of the generalized zero-divisor graph
of rings, and we associate a generalized zero-divisor graph to a multiplicative sub-
monoid. In the third section, we expressed the adjacency spectrum of Γ′(Sk), where
S = {0, 1, 2}, which is a submonoid of the ring Z4 with respect to multiplication.
In the fourth section, for any finite commutative ring, we express the graph Γ′(R)
as a generalized join of a complete graph and null graphs and obtain its adjacency
spectrum. We find the multiplicities of eigenvalues 0 and −1 of Γ′(R) and express
the remaining eigenvalues in terms of eigenvalues of Γ′(Sk), where R is a ring which
is a direct product of finite commutative local rings with unity. In the fifth section,
as an application, we give illustrative examples to find the adjacency spectrum of
Γ′(R), where R is a direct product of finite commutative local rings.

2. The generalized zero-divisor graph Γ′(R)
Let R be a commutative ring. The generalized zero-divisor graph Γ′(R) is a

simple (undirected) graph with vertex set the set of all nonzero zero-divisors in
R and two distinct vertices x and y are adjacent if xny = 0 or xyn = 0, for some
positive integer n. We use the exact definition to define the generalized zero-divisor
graph of a finite commutative monoid with respect to multiplication.

It is clear that Γ(R) and Γ′(R) have the same set of vertices, and if two vertices
x and y are adjacent in Γ(R), then they are adjacent in Γ′(R) but not conversely.
In [1], Anderson et al. proved that for a commutative ring R, Γ(R) is connected
and diam(Γ(R)) ≤ 3. We have Γ′(R) is connected and diam(Γ′(R)) ≤ 3.
The following are elementary properties of Γ′(R).

Remark 2.1. Let R be a finite commutative ring.

1. If x is a nonzero nilpotent element in R, then it is adjacent to all the other
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vertices in Γ′(R).

2. If two vertices x and y are adjacent in Γ′(R), then for any two positive integers
i, j, the vertices xi and yj are also adjacent in Γ′(R).

3. If R ̸= Z2×Z2 and x is adjacent to all the other vertices, then x is a nilpotent
element in R.

4. For a reduced ring R, Γ′(R) ≃ Γ(R).

The following lemma gives the condition under which Γ′(R) is a complete graph.

Lemma 2.2. Let R be a finite commutative ring. Then Γ′(R) is a complete graph
if and only if R is a local ring. In particular, if the number of nonzero nilpotent
elements in a local ring R is m, then Γ′(R) = Km. Further, Γ

′(Zpn) = Kpn−1−1.
Proof. Let R be a finite commutative ring. R is a local ring if and only if Z∗(R)
is the set of all nonzero nilpotent elements in R. Thus Γ′(R) is a complete graph.
Further, if R = Zpn , then Z∗(R) = {0, p, 2p, . . . , pn−1}. Therefore Γ′(R) = Kpn−1−1.

Let R be a finite commutative ring of size n and n has a prime factorization
pα1
1 pα2

2 . . . pαk
k . Then R is direct product of finite local rings Rp

αi
i

of order pαi
i , for

all i = 1, 2, . . . , k. In a local ring, every element is nilpotent or a unit. Every
nonzero nilpotent element of a ring R is adjacent to any other vertex, since if x is
a nonzero nilpotent element in R, then xny = 0, for some positive integer n and
every y ∈ V (Γ′(R). The extended generalized zero-divisor graph Γ′

e(R) is a graph
with a vertex set R and any two vertices x, y are adjacent if xny = 0 or xyn = 0,
for some positive integer n.

3. Adjacency spectrum of Γ′(Sk), S = {0, 1, 2}
Definition 3.1. [7] Let G = (V,E) be a graph. A partition Π = X1∪X2∪· · ·∪Xk

of V is said to be an equitable partition if there are numbers qij, i, j ∈ [k] such that
every vertex in Xi is adjacent to exactly qij vertices in Xj.

Let G = (V,E) be a graph and V = X1∪X2∪· · ·∪Xk with Xi∩Xj = ϕ, for all
i ̸= j ∈ [n]. Suppose that every vertex in Xi is adjacent with exactly qij vertices in
Xj for all i, j ∈ [n] and P = [pij] be a matrix whose rows are indexed by vertices
in V and columns are indexed by sets X1, X2, . . . , Xn, where

pij =

{
1 if vi ∈ Xj

0 otherwise.

Then Q = [qij] is called the quotient matrix. Let α be a set of indices with exactly
one vertex from each Xi, and αc is the complement of α. For any matrix M ,
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M [α : β] represents a submatrix whose row indices are given by α and column
indices are given by β. Let M [: β] represent the submatrix with all row and
column indices given by β. Recall the following theorem from [19].

Theorem 3.2. [19] Let A(G) be the adjacency matrix of a graph G, and let Q be
the quotient matrix corresponding to an equitable partition Π = {X1, X2, . . . , Xk}.
Let P be the characteristic matrix of Π and let α be an index set that contains
exactly one element from each Xi, i ∈ [k].

σA(G) = σ(Q) ∪ σ(Q∗), (3.1)

where Q∗ = A(G)[αc : αc]− P [αc :]A(G)[α : αc].

Observe that Theorem 1.1 is a particular case of Theorem 3.2, since the vertex
sets of a family of graphs in the generalized join graph of regular graphs form an
equitable partition. Next, recall the generalized Cauchy interlacing theorem and
some of its consequences [8].

Theorem 3.3. [8] Eigenvalues of a real symmetric matrix interlace with those of
its principal submatrices. That is, if λ1 ≤ λ2 ≤ · · · ≤ λn are eigenvalues of a
real symmetric matrix M and µ1 ≤ µ2 ≤ · · · ≤ µm are eigenvalues of its principal
submatrix of size m then

λi ≤ µi ≤ λn−m+i, for i = 1, 2, . . . ,m. (3.2)

The set S = {0, 1, 2} is monoid of the ring Z4 with respect to multiplication.
That is, S is a subset of a ring Z4 which is closed with respect to multiplication.
One can consider a zero-divisor graph on a subset of a ring. We use set S and the
graph Γ′

e(S) to study the graph Γ′
e(R) in subsequent results. The adjacency matrix

of an extended generalized zero-divisor graph (which is simple, so that it has no
loops) Γ′

e(S) is

A(Γ′
e(S)) =

0 1 1
1 0 1
1 1 0

 = 13 − I3, where 1n is a matrix of all ones of size n.

It is clear that

σ(A(Γ′
e(S)) =

{
2(1), (−1)(2)

}
. (3.3)

Recall that for any two graphs G1 and G2, A(G1 ⊗ G2) = A(G1) ⊗ A(G2). Also
for any two square matrices M1 and M2 of same size, σ(M1⊗M2) = σ(M1).σ(M2).
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Note that σ(M1) and σ(M2) are multisets and σ(M1).σ(M2) is a multiset which
is obtained by taking the product of each element in σ(M1) with each element in
σ(M2), with counting multiplicities. Hence, we have the following.

σ(A(Γ′
e(S

k))) = σ(A(⊗k(Γ′
e(S))) = (σ(A(Γ′

e(S)))
k (3.4)

=

{(
(−1)(j)(2)(k−j)

)(kj) : j = 0, 1, 2, . . . , k

}
.

A set X = {0, 2}k \ {0}k is a set of all nonzero nilpotent elements in Sk and
Y = Sk \

(
{0, 2}k ∪ {1}k

)
is a set of all non-nilpotent zero-divisors in Sk. Then

|X| = 2k − 1 and |Y | = 3k − 2k − 1. Let Γ′(Sk \ {0}k) be subgraph of Γ′
e(S

k) on
vertices Sk \{0}k, Ck = A(Γ′(Sk \{0}k)) and Dk = A(Γ′(Sk)). Then the adjacency
matrix of the graph Γ′

e(S
k) with respect to vertex ordering

{
{0}k, {1}k, X, Y

}
is

given by

A(Γ′
e(S

k)) =


0 1 A({0}k, X) A({0}k, Y )
1 0 A({1}k, X) A({1}k, Y )

A(X, {0}k) A(X, {1}k) A(X,X) A(X, Y )
A(Y, {0}k) A(Y, {1}k) A(Y,X) A(Y, Y )

 , (3.5)

where A(X1, X2) is an adjacency matrix between vertex sets X1 and X2. Therefore,
we have

A(Γ′
e(S

k)) =


0 1 11,2k−1 11,3k−2k−1

1 0 11,2k−1 01,3k−2k−1

12k−1,1 12k−1,1 12k−1,2k−1 − I2k−1 12k−1,3k−2k−1

13k−2k−1,1 03k−2k−1,1 13k−2k−1,2k−1 M3k−2k−1,3k−2k−1

 ,

(3.6)

Ck =

 0 11,2k−1 01,3k−2k−1

12k−1,1 12k−1,2k−1 − I2k−1 12k−1,3k−2k−1

03k−2k−1,1 13k−2k−1,2k−1 M3k−2k−1,3k−2k−1

 , (3.7)

Dk =

[
12k−1,2k−1 − I2k−1 12k−1,3k−2k−1

13k−2k−1,2k−1 M3k−2k−1,3k−2k−1

]
, (3.8)

where M3k−2k−1,3k−2k−1 = A(Y, Y ) .
By theorem 3.3, eigenvalues of Ck interlace those ofDk and eigenvalues of A(Γ′

e(S
k))

interlace those of Ck. That is, if λ1 ≤ · · · ≤ λ3k are eigenvalues of A(Γ′
e(S

k)),
µ1 ≤ µ2 ≤ · · · ≤ µ3k−2 are eigenvalues of Ck and ν1 ≤ ν2 ≤ · · · ≤ ν3k−2 are
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eigenvalues of Dk, then

λi ≤ µi ≤ λ2+i for i = 1, 2, . . . , 3k − 2 (3.9)

µi ≤ νi ≤ µ1+i for i = 1, 2, . . . , 3k − 3. (3.10)

If k is even, then the eigenvalues of Γ′
e(S

k) can be written as

−2k−1 = · · · = −2k−1︸ ︷︷ ︸
(k1) times

< −2k−3 = · · · = −2k−3︸ ︷︷ ︸
(k3) times

< −2k−5 = · · · = −2k−5︸ ︷︷ ︸
(k5) times

< · · · < (3.11)

−2 = · · · = −2︸ ︷︷ ︸
( k
k−1) times

< 1 < 22 = · · · = 22︸ ︷︷ ︸
(k2) times

< 24 = · · · = 24︸ ︷︷ ︸
(k4) times

< · · · < 2k−2 = · · · = 2k−2︸ ︷︷ ︸
( k
k−2) times

< 2k.

If k is odd, then the eigenvalues of Γ′
e(S

k) can be written as

−2k−2 = · · · = −2k−2︸ ︷︷ ︸
(k2) times

< −2k−4 = · · · = −2k−4︸ ︷︷ ︸
(k4) times

< · · · < (3.12)

−22 = · · · = −22︸ ︷︷ ︸
( k
k−2) times

< −1 < 2 = · · · = 2︸ ︷︷ ︸
(k1) times

< 23 = · · · = 23︸ ︷︷ ︸
(k3) times

< · · · < 2k−1 = · · · = 2k−1︸ ︷︷ ︸
( k
k−1) times

< 2k.

By equations (3.9) to (3.12), we state the following theorem.

Theorem 3.4. Let S = {0, 1, 2} be a monoid of the ring Z4 with respect to
multiplication and k be a positive integer. Then:

If k is even

σA(Γ
′(Sk)) =

{
((−1)j2k−j)((

k
j)−2) : j = 1, 2, . . . , k − 1

}
∪ {µ1, µ2, . . . , µ2k−2} ,

(3.13)

where − 2k−i < µi ≤ µi+1 < −2k−i−2, for i = 1, 3, 5, . . . , k − 1,

− 2 < µk−1 ≤ µk < 4, 2i < µi+k−1 ≤ µi+k < 2i+2, for i = 2, 4, . . . , k − 2.

If k is odd

σA(Γ
′(Sk)) =

{
((−1)j2k−j)((

k
j)−2) : j = 1, 2, . . . , k − 1

}
∪ {µ1, µ2, . . . , µ2k−2} ,

(3.14)

where − 2k−i < µi−1 ≤ µi < −2k−i−2, for i = 2, 4, . . . , k − 1, and

− 4 < µk−1 ≤ µk < 2, 2i < µi+k ≤ µi+k+1 < 2i+2, for i = 1, 3, . . . , k − 2.
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To find these unknown eigenvalues µ1, µ2, . . . , µ2k−2, we use the concept of eq-
uitable partitions and quotient matrices of the equitable partitions. We find an
equitable partition of the vertex set of Γ′(Sk) as below.
For each (i, j) ∈ [k − 1]× {0, 1, . . . , k − i}, define

X0 = {0, 2}k \ {0}k (3.15)

Xi,j =
{
x ∈ {0, 1, 2}k : x has i 1′s and j 0′s

}
. (3.16)

Letm be the number ofXi,j
′s. Thenm = 1+2+· · ·+k−1+k = (k+1)k

2
. We list these

sets according to the dictionary order on {(i, j) : i ∈ [k − 1], j ∈ {0, 1, . . . , k − i}}
as below

Πm = X0 ∪


X1,0, X1,1, . . . , X1,k−2, X1,k−1

X2,0, X2,1, . . . X2,k−2,
...

...
Xk−1,0 Xk−1,1

 . (3.17)

In the following result, we prove that the equation (3.17) forms an equitable
partition.

Theorem 3.5. The family of sets Πm in the equation (3.17) forms an equitable
partition of the vertex set of the graph Γ′(Sk). Every vertex in Xp,q is adjacent to
exactly L(p,q),(r,s) number of vertices in Xr,s, where

L(p,q),(r,s) =

(
k − p

r

)(
k − p− r

s− p

)
+

(
k − p

r

)(
k − r

s

)
−
(
k − p− r

s− p

)
. (3.18)

The quotient matrix associated with the equitable partition Πm is m × m matrix
given by

Qm = [L(p,q),(r,s)]m×m, and σ(Qm) ⊆ σA(Γ
′(Sk)). (3.19)

Proof. Every vertex in X0 is adjacent to every other vertex, since it is nilpotent.
Every vertex in X0 is adjacenct to L(0,0),(r,s) number of vertices in Xr,s. Also,
every vertex in X0 is adjacent to all the other 2k − 1 vertices in X0. Therefore
L(0,0),(0,0) = 2k − 1.
Fix sets Xp,q and Xr,s in Πm. Let x ∈ Xp,q. We will show that x is adjacent to
exactly L(p,q),(r,s) number of vertices in Xr,s. If y ∈ Xr,s is adjacent to x, then
x2y = 0 or xy2 = 0. Fix x2y = 0. Then xt = 1 implies yt = 0. Hence p ≤ s and
r ≤ k − p. There are

(
k−p
r

)
choices for 1′s in y and

(
k−p−r
s−p

)
choices for 0′s of y .
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Hence number of vertices y ∈ Xr,s such that x2y = 0 is
(
k−p
r

)(
k−p−r
s−p

)
. Now assume

that xy2 = 0, then we have xt = 1, which implies yt ∈ {0, 2}. Hence r ≤ k − p.
So counting 1′s has

(
k−p
r

)
choices and 0′s has

(
k−r
s

)
choices. Therefore number of

y ∈ Xr,s which satisfy xy2 = 0 is
(
k−p
r

)(
k−r
s

)
. Also, if x2y = 0 = xy2, then xt = 1

imply that yt = 0 and xt = 0, which gives yt = 1 and hence p ≤ s and q ≤ r. So
counting choices for 0’s of y, we get

(
k−p−r
s−p

)
number of y′s in Xr,s which satisfy

x2y = xy2 = 0. Therefore by inclusion-exclusion principle, the number of vertices
y ∈ Xr,s which are adjacent to x is L(p,q),(r,s) given by equation (3.18), and the
quotient matrix associated to the partition Πm is given by equation (3.19).

4. Spectrum of Γ′(R)

Let R be a finite commutative local ring. We define ϕ(R) to be the number of
units in R and f(R) to be the number of nonzero zero-divisors in R. Since in a
finite commutative local ring R, every nonzero zero-divisor is a nilpotent element,
hence f(R) = |R| − ϕ(R) − 1. Let U(R) denotes the set of units in R. Then
U(R1×R2×· · ·×Rn) = U(R1)×U(R2)×· · ·×U(Rn). Hence ϕ(R1×R2×· · ·×Rn) =
ϕ(R1)ϕ(R2) · · ·ϕ(Rn).

The following result gives the adjacency spectrum of the extended generalized
zero-divisor graph Γ′

e(R) for a finite commutative local ring R.

Theorem 4.1. Let R be a finite commutative local ring with m nilpotent elements
and n units. Then

σA(Γ
′
e(R)) =

{
0(n−1), (−1)(m−1),

m− 1 +
√
(m− 1)2 + 4mn

2
,
m− 1−

√
(m− 1)2 + 4mn

2

}
.

(4.1)

Proof. Let X be the set of nilpotent elements and Y be the set of units in a ring
R. Then |X| = m and |Y | = n. The adjacency matrix of Γ′

e(R) with respect to
ordering of vertices {X, Y } is

A(Γ′
e(R)) =

[
1m − Im 1m,n

1n,m 0n

]
.

The nullity of A is n− 1 and the nullity of A+ Im+n is m− 1. Therefore

{0(n−1), (−1)(m−1)}} ⊆ (Γ′
e(R)).

Also,

[
1m − Im 1m,n

1n,m 0n

]
is an equitable partition of the matrix A(Γ′

e(R)) and its
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quotient matrix is Q =

[
m− 1 n
m 0

]
. Therefore,

σA(Γ
′
e(R)) = {0(n−1), (−1)(m−1), σ(Q)} = {0(n−1), (−1)(m−1), λ1, λ2},

where λ1, λ2 are roots of equation x2 − (m− 1)x−mn = 0.

That is, λ1 =
m−1+

√
(m−1)2+4mn

2
, λ2 =

m−1−
√

(m−1)2+4mn

2
.

Corollary 4.2. If R =
k∏

i=1

Ri be a direct product of finite commutative local rings

Ri with mi nilpotents and ni units in the ring Ri for i = 1, 2, . . . , k. Then{
(0)

(
∑k

i=1(ni−1)
|R|
|Ri|

)
, ((−1)k)(

∏k
i=1(mi−1))

}
⊆ σA(Γ

′
e(R)). (4.2)

Proof. By Theorem 4.1,

σA(Γ
′
e(Ri)) = {0(ni−1), (−1)(mi−1), λi1, λi2},

where λi1, λi2 are roots of equation x2 − (mi − 1)x − mini = 0. Since Γ′
e(R) =

Γ′
e(R1)⊗Γ′

e(R2)⊗· · ·⊗Γ′
e(Rk), σA(Γ

′
e(R)) is a multiset and it is product of multisets

σA(Γ
′
e(R1)), σA(Γ

′
e(R2)), . . . , σA(Γ

′
e(Rk)). Therefore 0 is an eigenvalue of σA(Γ

′
e(R))

with multiplicity
k∑

i=1

(ni − 1)
|R|
|Ri|

. Also, (−1)k is an eigenvalue with multiplicity

k∏
i=1

(mi − 1). Hence
{
(0)

(
∑k

i=1(ni−1)
|R|
|Ri|

)
, ((−1)k)(

∏k
i=1(mi−1))

}
⊆ σA(Γ

′
e(R)).

Corollary 4.3. If R is a finite commutative local ring, then

σA(Γ
′(R)) =

{
(−1)(f(R)−1), (f(R)− 1)(1)

}
. (4.3)

In particular,

σA(Γ
′(Zpα)) =

{
(−1)(p

α−1−1), (pα−1 − 1)(1)
}
.

Proof. If R is a finite commutative local ring, then all vertices in Γ′(R) are nonzero
nilpotent elements. Therefore, Γ′(R) = Kf(R). Hence proof.

Definition 4.4. Let H be a graph obtained from Γ′(Sk) by merging all nilpotents
into a single vertex say 0 and by edge contraction.
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First, we express Γ′(R) as an H-generalized join of a complete graph and a
family of null graphs.
Let

χ(xi) =


1 if xi is unit,

0 if xi = 0,

2 if xi is nonzero nonunit.

and

C(x) = (χ(x1), χ(x2), . . . , χ(xk)) ∈ Sk, for each x = (x1, x2, . . . , xk) ∈ R.

We define

X0 =
{
x ∈ R : C(x) ∈ {0, 2}k \ {0}k

}
, (4.4)

Xe =
{
x ∈ R : C(x) = e ∈ Sk \ ({0, 2}k ∪ {1}k)

}
. (4.5)

The family of sets {
X0, Xe : e ∈ Sk \ ({0, 2}k ∪ {1}k)

}
. (4.6)

These 3k − 2k sets forms a partition of the vertex set of Γ′(R).
The following result gives the total number of nonzero nilpotent elements and

the number of non-nilpotent zero-divisors in the direct product of finite commuta-
tive local rings.

Theorem 4.5. Let R =
k∏

i=1

Ri, where Ri are finite commutative local rings for

i = 1, 2, . . . , k. Let β and γ denote the total number of nonzero nilpotent elements
and the number of non-nilpotent zero-divisors in a ring R. Then

β = |X0| = f(R), γ =
∑

e∈H\{0}k
|Xe|, where (4.7)

|Xe| = ϕ

 ∏
ei(i)=1

Ri

×
∏

ei(1)=2

f(Ri). (4.8)

Proof. Since ϕ is a multiplicative function, the proof follows from the multiplica-
tion principle of combinations.
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In the following theorem, we express the graph Γ′(R) as an H-generalized join
graph of a complete graph and null graphs.

Theorem 4.6. Let R =
k∏

i=1

Ri be a direct product of finite commutative local rings

and F = {Γ′(X0),Γ
′(Xe) : e ∈ H} is the family of subgraphs of Γ′(R), where

X0 =
{
x ∈ R : χ(x) ∈ {0, 2}k \ {0}k

}
, (4.9)

Xe =
{
x ∈ R : χ(x) = e ∈ Sk \ ({0, 2}k ∪ {1}k)

}
. (4.10)

Then

Γ′(X0) = K|X0|,Γ
′(Xe) = K |Xe|, (4.11)

and Γ′(R) is a H-generalized join of family F of graphs.
Proof. Let x ∈ Xe and y ∈ Xf . Suppose e and f are not adjacent in the
graph H. Then enf ̸= 0 and efn ̸= 0, for any positive integer n. Hence there is
t ∈ {1, 2, . . . , k} such that e(t) = f(t) = 1 and hence xt and yt both are units.
Therefore xny ̸= 0 and xyn ̸= 0, for any positive integer n. Hence, x and y are not
adjacent. Also, if e and f be adjacent, then e2f = 0 or ef 2 = 0. There exists a
positive integer n such that xn = e2 and yn = f 2. Therefore, xny = 0 or xyn = 0
for some positive integer n. Hence, since e and f are adjacent, it follows that x
and y are adjacent. Hence, any two vertices x ∈ Xe and y ∈ Xf are adjacent if
and only if e and f are adjacent in H. Thus Γ′(R) is H-generalized join of family
of graphs F .

The following theorem gives an expression for the adjacency spectrum of Γ′(R)
for a direct product of finite commutative local rings.

Theorem 4.7. Let R =
k∏

i=1

Ri be direct product of finite commutative local rings

and N = diag(|Xe|)e∈H . Then

σ(A(Γ′(R))) =
{
(−1)(β−1), 0(γ−(3k−2k−1))

}
∪ σ(NA(H)). (4.12)

Proof. By Theorem 4.6, we have

Γ′(R) =
∨
H

F , (4.13)
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where F is a family of graphs given in Theorem 4.6. Hence by Theorem 1.1, we
have

σ(Γ′(R)) =
{
(−1)(|X0|−1)

}
∪

⋃
e∈H\{0}

{
(0)(|Xe|−1)

}
∪ σ(NA(H))). (4.14)

Therefore

σ(Γ′(R)) =
{
(−1)|X0|−1

}
∪
{
(0)(

∑
e∈H\{0}(|Xe|−1))

}
∪ σ(NA(H))). (4.15)

By using equation (4.7), we get the expression in equation (4.12).

Theorem 4.8. Let R =
k∏

i=1

Ri be a direct product of finite commutative local rings

Ri. Let X0 be set of all nilpotents in R and for i = 1, 2, . . . , k−1, j = 0, 1, . . . , k−i,
if

Xij =
{
x ∈ R : C(x) = e ∈ Sk has exactly i 1′s and j 0′s

}
.

Then Xij = Xeij1
∪Xeij2

∪ · · · ∪Xeijmij
, dij1 = |Xeij1

|, dij2 = |Xeij2
|, . . . , dijmij

= |Xemij
|,

where mij =
(
k−1
i

)(
k−i+1

j

)
. Let us order sets Xij according to their increasing height,

where height of Xij is i + j. That is S0 = X0, S1 = X11, S2 = X12, S3 =
X21, S4 = X13, S5 = X22, S6 = X31, . . . . Let Art be a matrix whose rows are
indexed by vertices in Sr and columns are indexed by vertices in St and Dij =
diag(dij1 , . . . , d

ij
mij

) then nontrivial eigenvalues of adjacency matrix A(Γ′(R)) is that
of σ(NA(H)) and NA(H) is a block matrix diag(Dij)[Aij]. This block partitioning
of N(A(H)) is equitable if and only if Ri are same for all i = 1, 2, . . . , k.
Proof. Observe that the sum of each row of Aij is the same. Hence the block
partition of A(H) as [Aij] is equitable. Also, each Dij is a scalar matrix if and only
if Ri is the same for all i. Hence, each block of diag(Dij)[Aij] has a constant row
sum. Hence proof.

Remark 4.9. Above theorem says that if ring R =
k∏

i=1

Rpα, where Rpα is a local

commutative ring of order pα then nontrivial eigenvalues of A(Γ′(R)) are given by
a quotient matrix of size

(
k
2

)
, which is much smaller than that of A(H).

5. Application
Let Ri = Zqi be commutative local ring of order qi = pαi

i for each i = 1, 2, 3

and R =
k∏

i=1

Ri. Let N(Ri) denotes the set of all nilpotent elements in the ring Ri,
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N∗(Ri) = N(Ri) \ {0} and U(Ri) denotes units in the ring Ri. In this case ϕ(R)
becomes ϕ(|R|)- Eulers’ phi function and f(R) = f(|R|) = |R| − ϕ(|R|)− 1. Next,
we will find the adjacency spectrum of a ring R for k = 1, 2, 3.

(i) Let k = 1, R = R1. It is clear that Γ
′(R1) = Kq1−1. By Corollary 4.3,

σA(Γ
′(R1)) = {(−1)(p

α1−1
1 −2), (pα1−1

1 − 2)(1)}.

(ii) Let k = 2, R = R1 × R2. A graph H is the subgraph of Γ′
e(S

2) with vertices
e0 = (0, 0), e1 = (0, 1), e2 = (1, 0), e3 = (1, 2), e4 = (2, 1). The vertex set of
Γ′(R) is partitioned into a family of sets F = {Xei : i = 0, 1, 2, 3, 4} with

Xe0 = (N(R1)×N(R2)) \ {(0, 0)}, Xe1 = {0} × U(R2),

Xe2 = U(R1)× {0}, Xe3 = U(R1)×N∗(R2), Xe4 = N∗(R1)× U(R2).

Therefore,

|Xe0| = f(q1q2), |Xe1| = ϕ(q2), |Xe2| = ϕ(q1),

|Xe3 | = ϕ(q1)f(q2), |Xe4 | = f(q1)ϕ(q2).

Since Γ′(R) =
∨
H

{
K|Xe0 |, K |Xei | : i ∈ [4]

}
with underlying graph

H = Γ′({e0, e1, e2, e3, e4}) as a subgraph of Γ′
e(S

2). Therefore

σA(Γ
′(R)) =

{
0(

∑4
i=1(|Xei |−1)), (−1)(|X0|−1)

}
∪ σ(Q5), where

Q5 =


0 1 1 1 1
1 0 1 1 0
1 1 0 0 1
1 1 0 0 0
1 0 1 0 0



|Xe0| 0 0 0 0
0 |Xe1| 0 0
0 0 |Xe2| 0 0
0 0 0 |Xe3| 0
0 0 0 0 |Xe4 |

 .

(iii) Let k = 3, R = R1 × R2 × R3. In this case, Γ′(R) is H-generalized join of
a family of graphs

{
K|Xe0 |, K |Xei | : ei ∈ H3 \ {e0}

}
, where H is subgraph of

Γ′
e(S

3) on vertices e0 = (0, 0, 0), e1 = (0, 0, 1), e2 = (0, 1, 0), e3 = (0, 1, 1),
e4 = (0, 1, 2), e5 = (0, 2, 1), e6 = (1, 0, 0), e7 = (1, 0, 1), e8 = (1, 0, 2), e9 =
(1, 1, 0), e10 = (1, 1, 2), e11 = (1, 2, 0), e12 = (1, 2, 1), e13 = (1, 2, 2), e14 =
(2, 0, 1), e15 = (2, 1, 0), e16 = (2, 1, 1), e17 = (2, 1, 2), e18 = (2, 2, 1). Therefore
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|X0| = f(q1q2q3),

|Xe1| = ϕ(q1), |Xe2| = ϕ(q2), |Xe3| = ϕ(q2q3)

|Xe4| = ϕ(q2)f(q3), |Xe5| = ϕ(q3)f(q2),

...

|Xe18| = f(q1)f(q2)ϕ(q3).

σA(Γ
′(R)) =

{
0
∑18

i=1(|Xei |−1), (−1)(|X0|−1)
}
∪ σ(Q19), where

Q19 = A(H)diag(|Xe|)e∈H .

Now, according to the equation (3.17), we write an equitable partition of the
vertex set of R as below.

X0 = Xe0 , (5.1)

X1,0 = Xe13 ∪Xe17 ∪Xe18 , (5.2)

X1,1 = Xe4 ∪Xe5 ∪Xe8 ∪Xe11 ∪Xe14 ∪Xe15 , (5.3)

X1,2 = Xe1 ∪Xe2 ∪Xe6 , (5.4)

X2,0 = Xe10 ∪Xe12 ∪Xe16 , (5.5)

X2,1 = Xe3 ∪Xe7 ∪Xe9 . (5.6)

We take the sets that partition the vertex set of H as follows.
S0 = {e0}, S1 = {e13, e17, e18}, S2 = {e4, e5, e8, e11, e14, e15}, S3 = {e1, e2, e6},
S4 = {e10, e12, e16}, S5 = {e3, e7, e9}.
Suppose that Aij is a submatrix of A(H) whose rows are indexed with vertices
in Si and columns are indexed by Sj. Then A(H) = [Aij]

5,5
i=0,j=0 and note that

Aij = At
ji. Observe that

A00 = O1, A11 = A55 = O3, A33 =

0 1 1
1 0 1
1 1 0

 , A44 = O3, A55 = O3,

A22 =


0 0 1 1 1 0
0 0 1 1 0 1
1 1 0 0 0 1
1 1 0 0 1 0
1 0 0 1 0 1
0 1 1 0 1 0

 , A01 = A03 = A04 = A05 = 11,3, A02 = 11,6,
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A12 =

1 1 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 1

 , A13 =

1 1 0
1 0 1
0 1 1

 , A14 = O3, A15 =

1 1 0
1 0 1
0 1 1

 ,

A32 =

1 0 1 1 0 1
0 1 1 1 1 0
1 1 0 0 1 1

 , A42 = O3,6, A52 =

0 0 1 1 0 0
1 0 0 0 0 1
0 1 0 0 1 0

 ,

A34 = I3, A35 =

0 0 1
0 1 0
1 0 0

 , A45 = O3.

Let N3 = diag(D0, D1, D2, D3, D4, D5). Then Q19 = N3A(H3) and diagonal
matrices D0, D1, D2, D3, D4, D5 are given by

D0 = f(q1q2q3),

D1 = diag(ϕ(q1)f(q2)f(q3), f(q1)ϕ(q2)f(q3), f(q1)f(q2)ϕ(q3)),

D2 = diag(ϕ(q2)f(q3), f(q2)ϕ(q3), ϕ(q1)f(q3), f(q1)ϕ(q3), ϕ(q1)f(q2), f(q1)ϕ(q2)),

D3 = diag(ϕ(q3), ϕ(q2), ϕ(q1)),

D4 = diag(ϕ(q1q2)f(q3), ϕ(q1q3)f(q2), f(q1)ϕ(q2q3)),

D5 = diag(ϕ(q2q3), ϕ(q1q3), ϕ(q1q2).

The block diagonal matrix [Aij]
5,5
i=0,j=0 forms an equitable partition of the

matrix A(H) and corresponding quotient matrix is

Q =


0 3 6 3 3 3
1 0 2 2 0 1
1 1 3 2 0 1
1 2 3 3 1 1
1 0 0 1 0 0
1 2 2 1 0 0

 = [qij].

The matrix Q19 can be written into block diagonal form as [DiAij]
5,5
i=0,j=0. Its

quotient matrix is Q′ =
[
trace(Di)

qij
size(Aij)

]5,5
i=0,j=0

. Eigenvalues of Q′ interlace

eigenvalues of Q19.

6. Conclusion
Expression (4.12) in Theorem 4.7 gives multiplicities of eigenvalues −1 and 0 in

terms of the number of nonzero nilpotent elements and non-nilpotent zero-divisors,
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respectively, in the ring. The remaining eigenvalues are in terms of the eigenvalues
of Γ′(Sk). Many authors expressed zero-divisor graphs as a generalized join of other
graphs and obtained the properties of zero-divisor graphs. In expression (4.13), we
have expressed the graph Γ′(R) as a multi-partite graph with one component a null
graph, and the remaining components are all complete graphs. Therefore, if k ≤ 3
and pαi−1

i ≤ 4, then Γ′(R) is a planar graph. Many other structural properties of
the graph Γ′(R) can be observed from the expression (4.13).
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